
 1

Research and development of software tools to support
teaching and learning collaborative operations

Mario J. López
Departamento de Ingeniería Industrial

Universidad de Santiago (USACH)
Santiago, Chile

Francisco F. Moreno
Departamento de Ingeniería Industrial

Universidad de Santiago (USACH)
Santiago, Chile

Jorge E, Bravo

Departamento de Ingeniería Industrial
Universidad de Santiago (USACH)

Santiago, Chile

Víctor F. Paredes

Departamento de Ingeniería Industrial
Universidad de Santiago (USACH)

Santiago, Chile

Héctor R. Ponce
Departamento de Auditoría y Contabilidad

Universidad de Santiago (USACH)
Santiago, Chile

ABSTRACT

A recently developed educational paradigm shows that
teaching and learning has shifted form teaching oriented
towards learning oriented (Entwistle 2000). In this new
paradigm lecturers and students have more active roles
to play in the teaching and learning process. This proc-
ess is made out of concrete experiences followed by ob-
servation and reflection of such experience, which leads
to the formation of abstract concepts and the construc-
tions of principles or generalisations that is followed by
testing of such concepts in new situations (Kolb 1991).
Thus lecturer and student interactions are of new form.

This paper describes both a research into teaching and
learning centred in learning and the development of
software tools to support the collaborative operations
between lecturer and students and among students.

Keywords: TIC; software tools; e-learning; teaching
and learning; deep knowledge.

1. INTRODUCTION
The authors' educational experiences had showed that
the traditional approach to teaching made students to re-
call by memory with a risk of failing to remember as
time passes.

The development of both educational theory and prac-
tice and information and communication technologies
have empowered a research and development project, at
the Department of Industrial Engineering, to develop a
set of software tools to support the operations that
emerge from a renewed relationship between lecturers
and students.

The main conceptual learning frameworks are the “ex-
periential learning approach” and the distinction be-
tween “deep learning” approach and “superficial learn-
ing” approach. As a result of the use of these frame-
works, our own ideas of what learning meant also
changed.

The paper presents the theoretical elements that contrib-
uted to build a renewed lecturer student relationship; the
experiential approach to learning is described as well as
the distinction between deep and surface learning.

Next, the paper describes the design of the renewed lec-
turer student relationship; that is contents and related ac-
tivities and evaluations to match the four stages of expe-
riential learning approach: concrete experiences; obser-
vation and reflection; formation of abstract concepts and
the testing of such concepts in new situations.

The paper then moves to its kernel, the design and de-
velopment of information and communications technol-
ogy to support the renewed student lecturer operations.
The four modules are detailed as well as their three-
layer structure (database services, Web services and cli-
ent). The description focuses on one of the software
procedures of the module for lecturers; the one that al-
lows lecturers to upload previously modelled and devel-
oped contents, activities and evaluations. The lecturer
has only to follow a dialog box that asks for the files.
What is behind these actions is then described; that is,
the syntax graph designed and constructed is explained
as well as its associated parser and discriminator.

Finally, some remarks are made as a way of conclu-
sions.

 2

2. BACKGROUND
Three topics are discussed as background or theoretical
elements that contributed to build renewed lecturer stu-
dent interactions: the distinction between deep and sur-
face learning; teaching and learning centred in learning
and the experiential approach to learning.

2.1 Deep and surface learning
The first theoretical source that influenced our devel-
opment was the distinction between the superficial ap-
proach and the deep approach to learning. With these
important concepts, we realized that some students have
different ways of confronting the learning process.
While some students take learning simply as a matter of
memorizing concepts and reproducing knowledge; other
students approach learning with interest in ideas and
understanding and with a clear intention to transform
such ideas based essentially on their previous experi-
ences and knowledge.

2.2 The learning centred model
Some of the characteristics attributed to the teacher-
centred or content oriented approach to teaching and
learning (Entwistle, 2000) are that the lecturer is the
teaching and learning centre; he decides what students
must learn; that students participate executing the activi-
ties assigned by the lecturer. Thus, students are mostly
passive and wait to receive knowledge from the lecturer
and it falls on him/her the whole responsibility for the
success or failure of student learning. This model, in
hands of a good lecturer has proved to be very effective,
and for many years, it has satisfied the needs of the aca-
demic community. The main difficulty with this model,
however, is that it encourages a surface approach to
learning (Entwistle, 2000). Under this teaching and
learning model, students take learning simply as a mat-
ter of memorising concepts and reproducing knowledge.

On another hand, a learning centred model promotes the
deep approach to learning among students. That is to
say, it develops an environment that fosters the interest
in ideas and understanding in contrast with the prevalent
approach that principally focus on memorising con-
cepts. The aim is to conceive a series of related activi-
ties that helps to stimulate and develop, in students, the
ability to seek meaning, relate concepts and make sense
of their experiences within and beyond the frontiers of
our courses (Entwistle, 2000). In this model, the teach-
ing and learning process changes from being centred in
teaching to be centred in learning. Educators became fa-
cilitators and learners are much more active (Gibbs
1999).

2.3 The experiential approach
A third theoretical element that came to contribute to
our development of an e-learning environment was the
experiential approach to learning (Kolb, 1984). The cru-

cial question that this approach addresses is how stu-
dents learn. Although originally formulated to address
the question of adult education, it has constituted in an
important contribution to understand how students learn
in general. In this approach, learning is understood as a
process in which “people generate from their experience
the concepts, rules and principles that guide their behav-
iour in new situation” (Kolb, et al., 1991, p.60). The ef-
fectiveness of their behaviour depends on how they
adapt their concepts, change their rules or discover new
guiding principles.

The learning takes place through a continuous and re-
current sequence of actual experiences and, as experi-
ences for themselves are insufficient, they must be ac-
companied by thought, observation, abstract concept
construction and trying out these concepts in new ex-
periences. Thus, the learning process is conceived as a
four-stage cycle. (1) concrete experiences are followed
by (2) observation and reflection of such experience,
which leads to the (3) formation of abstract concepts
and the constructions of principles or generalisations
which follows (4) the testing of such concepts in new
situations.

We realised that following this model we could incorpo-
rate new learning activities to emphasise each phase of
the cycle. Thus, we thought of introducing seminars
with small groups, with a view to have debates or dis-
cussions on new concepts. Assessing students through
the development of a case study applied to a real world
situation, which was conducted as a course project. As-
signing minor research work on the Web and develop-
ing a more personalised instruction.

We also realised that information technologies, such as
those integrated to Internet, GroupWare systems and
CDs, adequately mixed into the educating practices,
have ample possibilities to enact both the learning cen-
tred approach to learning and experiential learning.
Consequently, using previous courses bank of students’
projects, we thought of making them available through
the Internet, preparing them as simulations. We also
thought it appropriate to prepare audio and video clips
with main concept explanations.

The change of paradigm can be summarised as follows.
The lecturer in the traditional paradigm is a deliverer,
unique assessor and decides what and how students
learn. Students are dependent, individualist and recep-
tive. On the other hand, in the new paradigm lecturers
are managers, planners, designers, facilitators and
guides. Students are autonomous, participating, collabo-
rative and engaged (Cervera & Gonzalez 1997).

 Information technologies also enable a better teaching
and learning process, which can have a greater student

 3

emphasis via the use of learning resources available
with greater degrees of freedom: place and time.

3. LECTURER STUDENT INTERACTIONS
Next, it was necessary to design a teaching and learning
process, centred in learning and using the experiential
approach. All this with a view to promote deep learning,

Thus, a new lecturer student relationship was conceived;
that is contents, related activities and evaluations were
redefined to match the four stages of experiential learn-
ing approach: concrete experiences; observation and re-
flection; formation of abstract concepts and the testing
of such concepts in new situations.

Mainly, the new relationship was based upon two as-
pects: a new course organisation and the development of
a synchronous and asynchronous Web site to support
course activities.

3.1 Courses
Consequently, courses were organised in a new and dif-
ferent manner to provide students with opportunities for
experiences, thoughts, observations, abstract concept
construction and probe of new experiences.

For abstract conceptualisation there was an initial con-
ference per course unit as well as reading of articles,
papers and book chapters. For experiences and probe of
new ones, students developed, throughout the course, a
case study. Seminars with small groups, with a view to
have debates or discussions on new concepts were in-
troduced. Assessing students through the development
of a case study applied to a real world situation, which
was conducted as a course project. Assigning minor re-
search work on the e-learning environment. For thought
and deliberation small group seminar were introduced.

According with their conceptual maps, contents were
modelled and separated into those to be seen in confer-
ences and those to be presented via the Web site. Con-
ferences embodied the main contents, activities, as-
signments and the unit's calendar. Web contents were
presented in three levels. Level 1 included an explana-
tory video, annotated presentation of unit concepts and
links to the next level. Level 2 covered a detailed expla-
nation of concepts in level 1 and links to level 3, which
presented primary material to expand the concepts such
as summaries of book chapters, final year projects, arti-
cles, papers and lecturer’s notes.

Each unit included a set of activities for students experi-
encing with conferences and Web site contents. The ac-
tivities consisted of a number of assignments, which
made up the development of a case study that students
conducted in small groups.

A continuos assessment was employed: Tests on the
students' reading and understanding of abstract con-
cepts. The practical work was assessed in two ways, the
writing up of one report per unit and the short disserta-
tion as introduction to the seminars. The three required
University partial tests were also conducted. An equa-
tion to calculate the final mark was agreed with stu-
dents.

3.2 The Web site
The information and communications technology de-
signed and developed are made up of a model, e-
learning tools, an e-learning engine and an e-learning
administrator. It is a model of e-learning in that it sup-
ports both the experiencial and deep learning. It is an e-
learning tool because it allows lecturers to upload con-
tent materials, activities and evaluations and it provides
students with access to those materials and activities. It
is an e-learning engine since it links up client applica-
tions with Web and data services and files in any for-
mat. It is an e-learning administrator in that it controls
accesses, activates and deactivates access to asynchro-
nous and synchronous tools and administrates student
syllabus.

The sets of tools are assembled in three distinct modules
(student, lecturer and administrator) plus a module
shared by the other three. The spread of options avail-
able for students and lecturers is as follows.

Student

Lecturer

Figure 1: Menus

 4

The option "connection" gives students access to the
synchronous activities (video broadcast, chats, and
tests). The other options manage the asynchronous ac-
tions, which follow the modelling (contents, activities
and assessment) and other options to ease the navigation
(bibliography, resources and personal data). The menu
for the lecturer is also organised following the model-
ling: "contents", "activities" and "assessment"; for each,
the lecturer can create, alter and upload. The option
"connection" allows the lecturer to set date and time for
the synchronous activities as well as to supervise them.

4. SOFTWARE TOOLS
The software tools associated to the Web site were built
in three layers (Lopez et al 2002). The basic layer is
constructed by an object relational database (Dorsey
1999) that administrates file locations, as well as stu-
dents, syllabuses, courses, activities, assessments, lec-
turers, hits and others. The middle layer is built by the
Apache server, which provides the Web services. The
logic of the tools is concentrated in this layer. Commu-
nication with the other two layers is administrated as
well. This service processes client requests and responds
with "html" pages or with a Java class, which includes
data and methods. The third layer is made up by a
browser, which generates the client requests to the Web
server. The Web server, through session administration,
sends the clients data and methods in classes.

The four modules (student, lecturer, administrator and
shared) have a total of 260 software procedures (Dor-
sey, & Hodipka, 1999) of different complexity. The
shared module has three software procedures, the mod-
ule for student has thirty six procedures, the module for
lecturers has one hundred and thirty seven software pro-
cedures and the database and webmaster administrator
has eighty four procedures.

The module for the lecturer requests the definition of
the list of contents via the provision of labels for chap-
ters, sections and topics. Technically, this is done
through an ordered and linked list. Next, the dialog
moves to the contents for each of the topics previously
defined. These are Web pages prepared by the lecturer,
or his/her assistants or specially prepared by hyperme-
dia professionals. Each Web page may have up to three
levels of depth, to be adjusted to the three-layer model.
For each defined topic, there opens another dialog box,
which asks for the name of the parent Web page. The
box has a button to examine the folder and file structure
of the personal computer of the lecturer. The Web
server syntactically analyses the file, identifying internal
links and renaming them for definitive location in both
the data server and file server. This is repeated for the
three layers of the model.

Technically, and due to the necessary administration of
various courses, several lectures, multiple students and
manifold topics, this is done by the Web server, which
sends a class to the client. The class is named ‘Lectur-
erFile’ and, among other attributes, it includes the iden-
tification of the lecturer and that of the course. Amid the
methods there are the ‘Parser’, which performs the syn-
tactical analysis and asks for the linked files; the ‘File-
Saver’, which renames all files with a number generated
by a saved procedure in the database, saves names and
location in the database and save the file in the web
server. Many formats are administrated, among them
are: ‘asp’, ‘html’, 'xml', 'cgi', ‘php’, ‘cfm’, ‘jsp’, 'xls',
‘doc’, ‘zip’, 'exe', ‘pdf’, ‘ppt’, 'pps', 'tif’, 'bmp', 'png’,
‘jpg’, ‘gif’ 'wav', 'mp3', 'mov', ‘avi’, ‘asf’, ‘swf’, ‘fla’,
‘svg’. This is done recursively three times to accomplish
the model.

Of the 137 software procedures available for lecturers,
the one that is crucial to the new student lecturer rela-
tionship is that which allows the uploading of previ-
ously modelled contents. It also better illustrates the de-
sign of the site. In the final interface, as described, the
lecturer has only to follow a dialog box that asks for the
files.

What is behind these actions is now described; that is,
the syntax graph designed and constructed is explained
as well as its associated parser and discriminator.

With the purpose of designing friendly and easy of use
interfaces, syntax or conceptual graphs were used be-
cause they express meaning in a form that is logically
precise, humanly readable, and computationally tracta-
ble. With a direct mapping to language, conceptual
graphs serve as an intermediate language for translating
computer-oriented formalisms to and from natural lan-
guages. With their graphic representation, they serve as
a readable, but formal design and specification lan-
guage. Conceptual Graphs have been implemented in a
variety of projects for information retrieval, database
design, expert systems, and natural language processing
(Guy et al 2003).

4.1 The need for design
A lecturer prepares the contents to be uploaded; these
take the form of a "html" file, which has links to other
documents, images or other files in other formats. For
example, figure 2 shows the modelling of contents.

The modelling of contents included a first level with an
"html" file describing the headlines of three concepts.
The model shows the link to the second level for the
first concept ("globalización"), which has a descriptive
text, an image and a link to the third level.

 5

Figure 2: Model of contents

4.2 A grammar analyser
Therefore, a grammar analyser was designed to locate,
in the "html" file, references to other files, images or
files in other formats. As well as identifying files, the
analyser must save file names and location in database
and Web services respectively.

In brief, the analyser should first discriminate between
valid and not valid references to tags inside the "html"
code. Valid tags will be those containing references to
any other file in any format or URL addresses. All other

tags will be invalid for the purposes of the analysis,
since they will not make reference to other files.

Formally, what the analyser should do was:

If symbol is aspirant to script or style tag
 locate whole script or style tag
Else
 If script tag
 find end of script tag
 If style tag
 find end of style tag
 Else
 do nothing
 Else
 analyse tag
 If valid symbol
 Read file or URL name
 Else
 do nothing

Figure 3 shows the syntax graph for the described ana-
lyser.

 6

The main actions of the analyser are fulfilled by five
distinct blocks, which were numbered for convenience
only:

Blocks of states 0 to 14 and 80: The opening of tags is
analysed if tag is valid, it considers both cases: fulfil-
ment and unfulfilment of html w3c standards (World
Wide Web Consortium).

Blocks 500 to 550: Possible file names are analysed for
tags beginning with "script", "href" or "background".
URLs and references are also considered.

Blocks 600 to 610: Once the sequence "script" is read, it
waits for the "/script" to return to normal processing.

Blocks 650 to 659: Once the sequence "style" is read, it
waits for the "/style" to return to normal processing.

Blocks 700 to 714: After the sequence "<s" or "<S", it is
discriminated if it corresponds to "script" or "style" and
variables src or sty are activated. Otherwise processing
returns to state 2.

4.3 Syntax graph description
The analyser defines a state variable as an integer with 0
as initial value. For each "html" code element a new
value for the variable is obtained; this is shown in the
syntax graphs over the arrows between states.

Some of the conventions in the syntax graphs are:

bl = blank space, tabulation or return.
nv = any upper or lower case character, arith-

metic or grammatical signs.
<!--...--> = comments.
<script> </script> = embedded code java script, VB

script and other scripts.
<style> </style> = styles defined within the document.

The different states in figure 3 are now explained:

State 0: It waits for the tag opening. In a normal process
it waits for the "<" character. Once read it passes to state
1. If it is waiting for an end of script it derives control to
state 600. If it waits for an end of a style tag, it passes
control to state 650.

State 1: Once the tag is opened and if the first character
read is the beginning of an element's name, the control
passes to state 2. If the character read is "/" (tag clos-
ing), then a file is no longer waited and control goes to
state 14. If the symbol read is "!", then what follows is a
comment and control goes to state 9.

State 2: If the symbol read is "=", then an element of a
tag is waited and control goes to state 3. The symbol ">"

closes the tag and control goes back to state 0 to begin
reading again. If the character read is a blank, tabulation
or end of line, control goes to state 7.

State 3: After the "=" symbol, a second member of the
tag is waited. If inverted commas are read, the control
passes to state 8. If a blank is read, tabulation or end of
line is read, control goes to state 8. A ">" symbol goes
control back to state 0, otherwise control goes to state 4.

State 4: It waits for inverted commas to close the second
member of the tag, then control passes to state 521.

State 7: The reading of a second member without in-
verted commas began. A blank symbol ends this state
and closes the tag, passing control to state 521. If a">"
is found, the tag is closed and control goes back to state
1.

State 8: It begins the reading of a second member of a
tag, which was opened with inverted commas. A second
set of inverted commas are waited to close the element,
control passes to state 4.

States 9 to 13: These states read the symbols between
"!-", "any set of symbols" and "-->" which correspond to
a commentary.

State 500: It waits for an "script", "href" o "back-
ground". An "s" or "S" control goes to state 502; and an
"h" or "H" to state 505 and a "b" or "B" to sate 509. If it
is another symbol that can initiate a tag, control goes to
state 501.

State 501: If an end of tag is found (">"), control goes
back to state 0. A blank symbol goes to state 500 and
"=" takes control to state 3.

States 505 to 508: The beginning of a tag was read that
makes reference to a file with the structure "href". If it is
not the "href" sequence, control goes to state 500. Oth-
erwise the next symbol is read. Control goes back to
state 0 if the symbol found is ">".

States 502 to 504: These states present a behaviour
similar to the states 500 to 505, but for the element
"script".

States 509, 510, 800, 511and 517: These are similar to
the 500 to 508 states, but the element "background".

State 518: Inverted commas initiate the reading of the
second member of a tag, which may correspond to a file
name and control is given to state 519. If the name be-
gins with "/", control goes to state 529. Otherwise con-
trol goes to state 520 to register the file name.

 7

State 519: A file name is waited. If the read symbol is
inverted commas, control goes to state 521. If the sym-
bol is "/", it means the file name has a path (file located
in other folder) and control passes to state 523. If a "#"
is read, then the file name lecture is complete and con-
trol moves to state 522. If "f" or "F" are read, then it
may be a reference with protocol and the potential file
name is read. Otherwise control goes to state 550 to
save the file name.

State 520: If the blank symbol is read, then control goes
to state 500. If ">" is read, then it is the end of the tag
and control goes to state 0. If an "f" or "F" is read con-
trol goes to state 530 and the potential file name is reg-
istered.

State 521: Symbols blank, tabulation or end of line
mean a new tag element will be analysed, therefore con-
trol goes back to state 500. If the symbol is ">" the tag
is closed and control goes back to state 0.

State 522: A section name of file is waited, which was
initiated with a "#". If inverted commas are read, it is
the end of the reference, and control goes to state 521 to
process the file name. If ":" is read, then what has been
read is a protocol (http, ftp, smb or another) and control
passes to state 523. The kept file name is disregarded. If
"#" is read, then an inverted comma is waited and the
file name obtained is added to the list.

State 523: An end of a second member is waited. In-
verted commas confirm that end and control goes to
state 521 and the file name is added to the list.

States 524 to 527: It is waited for completing the se-
quence "file:", if it is so, it is processed as if it were a
protocol and control passes to state 521. Otherwise, con-
trol goes back to state 522.

State 529: It waits for a blank character to close the tag
and pass control to state 500. With symbol ">" the tag is
closed and control passed to state 0. In both cases the
name of the file is added to the list. Otherwise, it keeps
reading symbols.

States 530 to 533: These are similar to states 524 to 527,
but it focuses in elements without the inverted commas.

States 600 to 610: These states process the “</script>”
tag. If the sequence is different, then state 609 is main-
tained until the closing of the tag, it then returns to state
0.

States 650 to 659: Similar to the above, but they process
the “</style>” tag. State 658 is alike 609.

States 700 to 705: Here, it is discriminated if the reading
is over “<scrip " (the blank is part of the string) or
“<script>”. State 705 passes the control to state 500 if
the last symbol read was “ “ or to state 0 if that symbol
was “>”. Otherwise control goes to state 2.

States 700, 711 to 714: Similar to the above, but they
process the “<style ” (the blank is part of the string) or
“<style>”.

4.4 The operations as a result of the syntax graph
The syntax graph described allowed the construction of
simple and easy of use human computer interfaces. A
first procedure permits the upload of previously pre-
pared files with previously modelled contents. The
software tools ask for the first file to be uploaded and
then, after processing the links in that first file, the
whole list of referenced files is asked. Figure 4 shows
the dialog panel for the first file to be uploaded.

Figure 4: Upload of first file

This first file is processed as already explained and the
list of references files is presented for uploading. Figure
5 illustrate how the interface asks for the list of refer-
enced files.

Figure 5: List referenced files

4.5 Example of file uploading
Be a chapter "Generalidades", a section "Introducción"
and a theme "Globilización". To this theme it will be
uploaded a set of files. The first file is "Global.htm",
which makes reference to a style file (estilo.css), an im-
age (global.jpg) and another html file (resumen.htm).
The first fourteen states will be as shown in figure 6.

 8

Entry State Next state
< 0 1
h 1 2
t 2 2
m 2 2
l 2 2
> 2 0
\n 0 0
< 0 1
h 1 2
e 2 2
a 2 2
d 2 2
> 2 0
\n 0 0
...

Figure 6: Table of states

The associated actions are to assign a code name, save
the original file name and path of the names for the files
"Global.htm", "estilo.css", "global.jpg" and "re-
sumen.htm". At the end of the process values are as-
signed as shown in the following table.

File name Code name Path State

Global.htm 0308051239371.html Received

estilo.css 0308051239372.css Expected

global.jpg 0308051239373.jpg imagenes Expected

resumen.htm 0308051239374.html Expected
Figure 7: Process

The code names are made up with the full date, full time
and sequence of upload; thus, code name
0308051239373 was upload on year 2003, month 08,
day 05 at 12 hour, 39 minutes, 37 seconds and was the
third to be loaded.

5. CONCLUDING REMARKS
The followings remarks are made as a manner of con-
clusions.

There exists the experiential approach to teaching and
learning which is centred in learning and fosters deep
learning. This approach redefines the relationship be-
tween lecturer and student through the inclusion of con-
cept construction; carrying out activities to experience
with those and new concepts; and providing opportuni-
ties for thought and reflection.

Information and communications technologies were de-
veloped to support the new lecturer student operations.
The asynchronous modules allowed uploading contents,
activities and evaluations. All this permitted to use pre-

vious lecturer timetable to conduct seminars to put into
practice the opportunities for thought and reflection.

The developed ICT took the form of software tools for
the lecturer, student and administrator, totalling 260
software procedures. These procedures were thoroughly
and carefully designed with a view to develop friendly
and easy of use human computer interfaces.

One of the important procedures developed was the one
that allows the lecturer to upload contents, activities and
evaluations. This allowed the reorganisation of activities
to conduct seminars for thought and reflection. For the
design of this particular interface, a concept graph was
used, which was detailed explained in this paper.

The uses of these graphs not only guarantied construct-
ing friendly interfaces, but also because they express
meaning in a form that is logically precise, humanly
readable, and computationally tractable and serve as an
intermediate language for translating computer-oriented
formalisms to and from natural languages.

Finally, a robust ICT was developed to support stu-
dents’ learning and students have found it not only use-
ful but also said that they would like to see more course
in a similar format (Lopez & Ponce 2003). Additionally,
and perhaps more importantly, students have recognised
that they had gained a deeper knowledge and that they
would very much appreciate more courses (Lopez &
Ponce 2004).

6. REFERENCES
Cervera, M. & Gonzalez, A. (1997) El docente y los en-
tornos virtuales de enseñanza aprendizaje. Edutec 97
(Universidad Rovira i Virgili).

Dorsey, P. & Hodipka, J. (1999). Oracle 8. Database de-
sign with UML. McGraw-Hill.
Entwistle, N. (2000) Promoting deep learning through
teaching and Assessment: conceptual frameworks and
educational contexts. TLRP Conference, Leicester, No-
vember.

Gibbs, G. (1999) Teaching in Higher Education: theory
and practice, how students differ as learners, Milton
Keynes: Open University.

Guy W. Mineau, G, Moulin, B & Sowa J (2003). “Con-
ceptual Graphs for Knowledge Representation”. Can-
ada: Springer-Verlag.

Kolb, D. (1984) Experiencial Learning: experience as
the source of learning and development, New Jersey:
Prentice-Hall.

 9

Kolb, D., Rubin, I. and Osland, J. (1991) Organizational
Behaviour: an experiential approach, New Jersey: Pren-
tice-Hall.

Lopez M & Ponce H (2004). e-learning promotes stu-
dents' deep learning: a case study. Proceedings of the
Communication Systems, Networks and Digital Signal
Processing (CSNDSP’ 2004). Newcastle upon Tyne,
England, 20 – 22 Julio.

Lopez, M, Bascuñan, C, Bravo, J. & Paredes, V. (2002)
Research and development of e-infrastructure to support
students' learning, in Carrasco, R (ed). Proceedings of
the Communication Systems, Networks and Digital
Signal Processing (CSNDSP’ 2002). Stafford, England,
15 – 17 Julio.

Page-Jones, M. (2000). Fundamentals of Object Ori-
ented Design in UML. Addison Wesley.

